ケィオスの時系列解析メモランダム

時系列解析、生体情報解析などをやわらかく語ります

確率過程

【確率過程の基礎】線形確率過程

線形確率過程の定義が曖昧なまま,「非線形何たら」とか感覚的な話をする論文が増えていると感じます.心拍変動指標では,パワースペクトルの両対数プロットの傾きが非線形指標に分類されて,もう30年くらいたちます (何で非線形なの?).ということで今回は…

【Rで時系列解析】相乗対数正規過程に従う非ガウスゆらぎ

自然界で観測される時系列には正規分布に従わないものがたくさんあります.正規分布はガウス分布とも呼ばれるので,正規分布に従わない確率過程は「非ガウス過程」と呼ばれます.時系列であれば,「非ガウス時系列」ですが,私はもっとやわらかい響きが好き…

【Rで時系列解析】1/fノイズの自己共分散 (自己相関)関数は対数関数で,べきじゃない

今回は,1/fノイズ (ピンクノイズ)の自己共分散 (自己相関)関数についての話です.つまり,パワースペクトルが となる時系列の自己共分散 (自己相関)関数は, ということを説明します.解析的に導出しようかと思いましたが,この論文 doi.org の流れをなぞる…

【Rでピンクノイズ】ピンクノイズ (1/fゆらぎ)の生成方法のまとめ

これまでに,ピンクノイズ (1/fゆらぎ)のサンプル時系列の生成方法について,私が知っているものは,ほぼすべて紹介しました (自己相関関数を指定するものだけ説明してません).今回は,ピンクノイズ (1/fゆらぎ)の生成方法をまとめておきます. Rのパッケー…

【Rで時系列解析】1/fノイズ (ピンクノイズ)時系列の生成:中点変位法

今回は,中点変位法 (midpoint displacement algorithm)で,1/fノイズ (ピンクノイズ)のサンプル時系列を生成します.元々,中点変位法は,非整数ブラウン運動のサンプルパス (サンプル時系列)を作る方法ですが,非整数ブラウン運動をわずかにはみ出た領域を…

【Rで時系列解析】中点変位法 (midpoint displacement algorithm)で非整数ブラウン運動のサンプルパスを生成

1次元の非整数ブラウン運動 (fractional Brownian motion)のサンプルパス (時系列)の生成方法の一つ「中点変位法」(midpoint displacement algorithm)について説明します. 中点変位法で作成した非整数ブラウン運動のサンプルパス (H=0.8)この話は,「フラ…

【Rで時系列解析】白色ノイズのm階積分 (和分)過程のパワースペクトル (数値実験)

前に,階積分 (和分)過程のパワースペクトルの記事を書いたときに導いた結果,分散の白色ノイズの階差分過程の時系列のパワースペクトルは, 階積分 (和分)過程の時系列のパワースペクトルは, について,数値実験で確認していなかったので,やっておきます…

【時系列解析】非整数積分 (和分)があれば,パワースペクトルはもっと自由:ARFIMA(0, d, 0)の半歩手前から大きく外れてみる

今回はパワースペクトルが,を定数として, の形になる,差分方程式で記述される確率過程を考えます.前の記事 chaos-kiyono.hatenablog.com で,m階積分 (和分)過程のパワースペクトル(もどき)を計算しました.つまり, 分散の白色ノイズの階積分 (和分)…

【時系列解析】m階積分 (和分)とパワースペクトル:ARFIMA(0, d, 0)の一歩手前

今回は,Autoregressive fractionally integrated moving average process (ARFIMA)への導入の手前です.ARFIMAの日本語訳は,私が訳せば「自己回帰非整数積分移動平均過程」,インターネット検索でよく見る訳は「自己回帰実数和分移動平均過程」です.MA (m…

【時系列解析】ピリオドグラムって何?よくわかりません

最近,「ピリオドグラム」(periodogram)とか「ピリオドグラム法」って何を意味するのかわからなくなりました.きっかけは,研究室のセミナーで使っている北川源四郎先生の時系列解析の本です.人のせいにしてすいません. 私は,periodogramを,これまでずー…

【Rで時系列解析】パワースペクトルの平均化処理

パワースペクトルを推定する数値実験を,少しずつやっていきたいと思います. 平均化処理ってやったほうがいいかも,というのが今回の感想です. Rでパワースペクトルを推定するとき,"spectrum"というコマンドを使えばいいんでしょ,と考えている人も多いと…

【確率過程・時系列解析】2次自己回帰過程の自己共分散 (自己相関)関数

2次自己回帰過程の自己共分散 (自己相関)関数を一つの式で表しておきます.差分方程式の形での表現は,この前のセミナーで学生が導いてくれたし,インターネットで検索すればいくらでも出てくると思います. 2次自己回帰過程の自己共分散とパラメタの関係 2…

【確率過程・時系列解析】1次自己回帰過程のパワースペクトルから自己共分散(自己相関)を求める

理由は良く知りませんが,自己共分散(自己相関)関数を使ってパワースペクトルを定義する流儀が存在します.そんな流儀,知ったことではないので,ここでは,1次自己回帰過程のパワースペクトルから,自己共分散(自己相関)を求めてみます.今回は,ここま…

【確率過程・時系列解析】自己回帰過程のパワースペクトルと自己共分散(自己相関)の関係(複素積分表示)

今回は,自己回帰過程について,パワースペクトルの複素積分で,対応する自己共分散(自己相関)を表します.これは,「次自己回帰過程のパワースペクトルは,1次自己回帰過程と2次自己回帰過程のパワースペクトルの和になっている」あるいは,「次自己回帰…

【確率過程・時系列解析】自己共分散(自己相関)とパワースペクトルの関係

自己共分散(自己相関)とパワースペクトルの関係についての話です.何言っているかわからない人は,下にまとめた関連記事を先に見てみてください.ちょっと前に,パワースペクトルは,自己共分散(自己相関)のフーリエ変換だ,という話をしました.という…

【時系列解析】なぜ,自己共分散(自己相関)が急激に減衰しないとパワースペクトルは定義できないのか?

北川 源四郎先生の本「Rによる 時系列モデリング入門」(33 ページ)では, 「ラグが大きくなるとき自己共分散関数が急激に減衰し」という条件が,パワースペクトル の定義を与える部分に書いてあります (以下では,をと書きます). 何で この条件「自己共分散…

【時系列解析】長期記憶,長時間相関,フラクタル

時系列の長期記憶 (long memory),長時間相関 (long-range correlation),フラクタル性 (fractality)について整理しておきます. 長期記憶過程 (long memory process) 長期記憶過程は自己共分散関数が, となる確率過程です.何で全部足すの?という疑問がわ…

【確率過程・時系列解析】自己回帰過程の特性方程式の根 (数値解)

前回は,自己回帰過程の特性方程式の話をしました. chaos-kiyono.hatenablog.com つまり,次自己回帰過程 について,特性方程式 の解 (根)の絶対値がすべて1より大きければ,自己回帰過程は発散しない. ということを説明しました.今回は,Rをつかって実際…

【確率過程・時系列解析】自己回帰過程の特性方程式の解と定常性

今回は,自己回帰過程の特性方程式の解と定常性の話です.特性方程式の解が,単位円の内側とか外側とかいう話の説明をします.次自己回帰過程 (以下のは,平均0,分散の白色ノイズです) をラグオペレータを使って書けば, と書けます.これは,以前にパワー…